Design and Experimental Verification of a Pantograph-Based Mechanism for Lower Limb Load Reduction by Compensating for Upper Body Weight

Author:

Mamiya Shotaro, ,Takahashi Tomoya,Uchiyama Naoki

Abstract

Several extant studies examine the design of power assist systems that support leg motion of the wearer. However, in most cases, actuators are always required to support the upper body weight of a wearer. This support reduces power efficiency, and thus, a new mechanism is required to effectively support upper body weight. This paper proposes a design of a lower limb load reduction device that uses a pantograph mechanism. In the mechanism, leg motion can be separated into horizontal and vertical motions, and only the lower limb load that is caused by vertical motion and the wearer’s own weight is compensated by the actuators. Additionally, the design enables support of upper body weight only in the support leg phase, and actuators are not used in the lifted leg phase. The design principle is described, and experimental results subsequently demonstrate the effectiveness of the proposed design.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3