Author:
Tagami Masaharu,Hasegawa Masaki,Tanahara Wataru,Tagawa Yasutaka, , , ,
Abstract
In this study, an active exercise function was added to a continuous passive motion device, which is widely used in rehabilitation therapy for function enhancement. The objective is to reduce physical overwork on the part of physical therapists and promote self-rehabilitation in patients. Impedance control based on position control was applied to provide active exercise load. Various active exercise loads are required to reproduce daily life muscle activity. Accordingly, a friction load model was introduced in the impedance control system. The effects of increasing the types of active exercise loads were evaluated by analysis of muscle activity during experimental tests, and a new muscle activity that could not be attained by the conventional spring-mass-damper load model was confirmed.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference29 articles.
1. R. B. Salter, H. W. Hamilton et al., “Clinical application of basic research on continuous passive motion for disorders and injuries of synovial joints: A preliminary report of a feasibility study,” J. of Orthopaedic Research, Vol.1, No.3, pp. 325-342, 1984.
2. Q. Liu, J. Zuo et al., “Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art,” Future Generation Computer Systems, Vol.113, pp. 620-634, 2020.
3. F. Wada, “Current status of robot-aided nuero-rehabilitation,” J. of the Japan Society of Mechanical Engineers, Vol.119, No.1166, pp. 8-13, 2016 (in Japanese).
4. S. Hirano, E. Saitho et al., “Development of rehabilitation robots,” Bulletin of the Japanese Society of Prosthetic and Orthotic Education, Research and Development, Vol.29, No.2, pp. 90-97, 2013 (in Japanese).
5. K. Kawamura, “Trends in rehabilitation and medical robots,” J. of the Robotics Society of Japan, Vol.11, No.1, pp. 71-75, 1993.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献