Author:
Kosaki Takahiro, ,Li Shigang
Abstract
This paper describes the development of an angle-sensorless exoskeleton with a tap water-driven artificial muscle actuator. The artificial muscle actuator consisted of an elastic rubber tube reinforced by braided fiber. Such actuators are highly flexible, lightweight, and water-resistant, and thus are inherently safe even for operations in direct contact with humans. An estimation system for the displacement of the artificial muscle actuator based on the water flow rates detected by flowmeters was constructed for the water-hydraulic exoskeleton. In addition, estimators of the velocity and acceleration of the actuator based on the estimated displacement and the measured flow rates were derived and incorporated into the estimation system. With this system, our previous wearable upper-limb assistive exoskeleton prototype was converted into an angle-sensorless version with higher safety in wet conditions. Its assistive performance was evaluated through experiments with research participants. Experimental results demonstrated that muscle activity could be reduced, although an assistive control strategy was executed with the variables estimated, excluding force.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference32 articles.
1. Cabinet Office, “Government of Japan: Annual report on the aging society,” 2016.
2. Q. Meng and M. H. Lee, “Design issues for assistive robotics for the elderly,” Advanced Engineering Informatics, Vol.20, No.2, pp. 171-186, 2006.
3. H. Lee, W. Kim, J. Han, and C. Han, “The technical trend of the exoskeleton robot system for human power assistance,” Int. J. Precis. Eng. Manuf., Vol.13, No.8, pp. 1491-1497, 2012.
4. F. Xiao, Y. Gao, Y. Wang, Y. Zhu, and J. Zhao, “Design and evaluation of a 7-DOF cable-driven upper limb exoskeleton,” J. of Mechanical Science and Technology, Vol.32, No.2, pp. 855-864, 2018.
5. H. Inoue and T. Noritsugu, “Development of Upper-Limb Power Assist Machine Using Linkage Mechanism – Drive Mechanism and its Applications –,” J. Robot. Mechatron., Vol.30, No.2, pp. 214-222, 2018.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献