Abstract
AbstractIn this work, we proposed an accurate analytical model for the estimation of the channel maximum temperature of Ga2O3 MOSFETs with native or high-thermal-conductivity substrates. The thermal conductivity of Ga2O3 is anisotropic and decreases significantly with increasing temperature, which both are important for the thermal behavior of Ga2O3 MOSFETs and thus considered in the model. Numerical simulations are performed via COMSOL Multiphysics to investigate the dependence of channel maximum temperature on power density by varying device geometric parameters and ambient temperature, which shows good agreements with analytical model, providing the validity of this model. The new model is instructive in effective thermal management of Ga2O3 MOSFETs.
Funder
National Key Research and Development Project
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献