Affiliation:
1. Rice University Houston TX USA
2. NorthWest Research Associates Boulder CO USA
Abstract
AbstractThere are different strategies for training neural networks (NNs) as subgrid‐scale parameterizations. Here, we use a 1D model of the quasi‐biennial oscillation (QBO) and gravity wave (GW) parameterizations as testbeds. A 12‐layer convolutional NN that predicts GW forcings for given wind profiles, when trained offline in a big‐data regime (100‐year), produces realistic QBOs once coupled to the 1D model. In contrast, offline training of this NN in a small‐data regime (18‐month) yields unrealistic QBOs. However, online re‐training of just two layers of this NN using ensemble Kalman inversion and only time‐averaged QBO statistics leads to parameterizations that yield realistic QBOs. Fourier analysis of these three NNs' kernels suggests why/how re‐training works and reveals that these NNs primarily learn low‐pass, high‐pass, and a combination of band‐pass filters, potentially related to the local and non‐local dynamics in GW propagation and dissipation. These findings/strategies generally apply to data‐driven parameterizations of other climate processes.
Publisher
American Geophysical Union (AGU)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献