Are general circulation models obsolete?

Author:

Balaji V.12ORCID,Couvreux Fleur3ORCID,Deshayes Julie4ORCID,Gautrais Jacques5ORCID,Hourdin Frédéric6,Rio Catherine3

Affiliation:

1. Cooperative Institute for Modeling the Earth System, Princeton University, NJ 08544

2. Laboratoire des Sciences du Climat et de l’Environnement, Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives, 91191 Gif-sur-Yvette, France

3. Centre National de Recherches Météorologiques, University of Toulouse, Meteo-France, CNRS, 31057 Toulouse Cedex, France

4. Sorbonne Universités-CNRS-Institut de recherche pour le développement (IRD) - Muséum National d’Histoire Naturelle (MNHN), Laboratory of Oceanography and Climate: Experiments and Numerical Approaches (LOCEAN), 75005 Paris, France

5. Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Université Paul Sabatier (UPS), 31062 Toulouse, France

6. Laboratoire de Météorologie Dynamique - Institut Pierre Simon Laplace (LMD-IPSL), Sorbonne University, CNRS, 75005 Paris, France

Abstract

Traditional general circulation models, or GCMs—that is, three-dimensional dynamical models with unresolved terms represented in equations with tunable parameters—have been a mainstay of climate research for several decades, and some of the pioneering studies have recently been recognized by a Nobel prize in Physics. Yet, there is considerable debate around their continuing role in the future. Frequently mentioned as limitations of GCMs are the structural error and uncertainty across models with different representations of unresolved scales and the fact that the models are tuned to reproduce certain aspects of the observed Earth. We consider these shortcomings in the context of a future generation of models that may address these issues through substantially higher resolution and detail, or through the use of machine learning techniques to match them better to observations, theory, and process models. It is our contention that calibration, far from being a weakness of models, is an essential element in the simulation of complex systems, and contributes to our understanding of their inner workings. Models can be calibrated to reveal both fine-scale detail and the global response to external perturbations. New methods enable us to articulate and improve the connections between the different levels of abstract representation of climate processes, and our understanding resides in an entire hierarchy of models where GCMs will continue to play a central role for the foreseeable future.

Funder

Agence Nationale de la Recherche

DOC | National Oceanic and Atmospheric Administration

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3