Exploration of diverse solutions for the calibration of imperfect climate models
-
Published:2024-08-06
Issue:4
Volume:15
Page:987-1014
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Peatier Saloua,Sanderson Benjamin M.,Terray Laurent
Abstract
Abstract. The calibration of Earth system model parameters is subject to data, time, and computational constraints. The high dimensionality of this calibration problem, combined with errors arising from model structural assumptions, makes it impossible to find model versions fully consistent with historical observations. Therefore, the potential for multiple plausible configurations presenting different trade-offs between skills in various variables and spatial regions remains usually untested. In this study, we lay out a formalism for making different assumptions about how ensemble variability in a perturbed physics ensemble relates to model error, proposing an empirical but practical solution for finding diverse near-optimal solutions. A meta-model is used to predict the outputs of a climate model reduced through principal component analysis. Then, a subset of input parameter values yielding results similar to a reference simulation is identified. We argue that the effective degrees of freedom in the model performance response to parameter input (the “parametric component”) are, in fact, relatively small, illustrating why manual calibration is often able to find near-optimal solutions. The results explore the potential for comparably performing parameter configurations that have different trade-offs in model errors. These model candidates can inform model development and could potentially lead to significantly different future climate evolution.
Funder
Agence Nationale de la Recherche H2020 Environment
Publisher
Copernicus GmbH
Reference51 articles.
1. Annan, J. D., Lunt, D. J., Hargreaves, J. C., and Valdes, P. J.: Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter, Nonlin. Processes Geophys., 12, 363–371, https://doi.org/10.5194/npg-12-363-2005, 2005. a 2. Balaji, V., Couvreux, F., Deshayes, J., Gautrais, J., Hourdin, F., and Rio, C.: Are general circulation models obsolete?, P. Natl. Acad. Sci. USA, 119, e2202075119, https://doi.org/10.1073/pnas.2202075119, 2022. a 3. Bellprat, O., Kotlarski, S., Lüthi, D., and Schär, C.: Objective calibration of regional climate models, J. Geophys. Res.-Atmos., 117, D23115, https://doi.org/10.1029/2012JD018262, 2012. a, b 4. Bodman, R. W. and Jones, R. N.: Bayesian estimation of climate sensitivity using observationally constrained simple climate models, WIRes Clim. Change, 7, 461–473, 2016. a 5. Chang, W., Haran, M., Olson, R., and Keller, K.: Fast dimension-reduced climate model calibration and the effect of data aggregation, Ann. Appl. Stat., 8, 649–673, 2014. a
|
|