The graft‐versus‐host problem for data‐driven gravity‐wave parameterizations in a one‐dimensional quasibiennial oscillation model

Author:

Shamir Ofer1ORCID,Connelly David S.1,Hardiman Steven C.2,Shao Zihan1,Yang L. Minah1,Gerber Edwin P.1ORCID

Affiliation:

1. Courant Institute of Mathematical Sciences New York University New York New York

2. Met Office Hadley Centre Exeter UK

Abstract

AbstractTwo key challenges in the development of data‐driven gravity‐wave parameterizations are generalization, how to ensure that a data‐driven scheme trained on the present‐day climate will continue to work in a new climate regime, and calibration, how to account for biases in the “host” climate model. Both problems depend fundamentally on the response to out‐of‐sample inputs compared with the training dataset, and are often conflicting. The ability to generalize to new climate regimes often goes hand in hand with sensitivity to model biases. To probe these challenges, we employ a one‐dimensional (1D) quasibiennial oscillation (QBO) model with a stochastic source term that represents convectively generated gravity waves in the Tropics with randomly varying strengths and spectra. We employ an array of machine‐learning models consisting of a fully connected feed‐forward neural network, a dilated convolutional neural network, an encoder–decoder, a boosted forest, and a support‐vector regression model. Our results demonstrate that data‐driven schemes trained on “observations” can be critically sensitive to model biases in the wave sources. While able to emulate accurately the stochastic source term on which they were trained, all of our schemes fail to simulate fully the expected QBO period or amplitude, even with the slightest perturbation to the wave sources. The main takeaway is that some measures will always be required to ensure the proper response to climate change and to account for model biases. We examine one approach based on the ideas of optimal transport, where the wave sources in the model are first remapped to the observed one before applying the data‐driven scheme. This approach is agnostic to the data‐driven method and guarantees that the model adheres to the observational constraints, making sure the model yields the right results for the right reasons.

Funder

Office of Advanced Cyberinfrastructure

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3