Learning Closed‐Form Equations for Subgrid‐Scale Closures From High‐Fidelity Data: Promises and Challenges

Author:

Jakhar Karan12ORCID,Guan Yifei12ORCID,Mojgani Rambod12ORCID,Chattopadhyay Ashesh13,Hassanzadeh Pedram12ORCID

Affiliation:

1. Rice University Houston TX USA

2. University of Chicago Chicago IL USA

3. University of California Santa Cruz CA USA

Abstract

AbstractThere is growing interest in discovering interpretable, closed‐form equations for subgrid‐scale (SGS) closures/parameterizations of complex processes in Earth systems. Here, we apply a common equation‐discovery technique with expansive libraries to learn closures from filtered direct numerical simulations of 2D turbulence and Rayleigh‐Bénard convection (RBC). Across common filters (e.g., Gaussian, box), we robustly discover closures of the same form for momentum and heat fluxes. These closures depend on nonlinear combinations of gradients of filtered variables, with constants that are independent of the fluid/flow properties and only depend on filter type/size. We show that these closures are the nonlinear gradient model (NGM), which is derivable analytically using Taylor‐series. Indeed, we suggest that with common (physics‐free) equation‐discovery algorithms, for many common systems/physics, discovered closures are consistent with the leading term of the Taylor‐series (except when cutoff filters are used). Like previous studies, we find that large‐eddy simulations with NGM closures are unstable, despite significant similarities between the true and NGM‐predicted fluxes (correlations >0.95). We identify two shortcomings as reasons for these instabilities: in 2D, NGM produces zero kinetic energy transfer between resolved and subgrid scales, lacking both diffusion and backscattering. In RBC, potential energy backscattering is poorly predicted. Moreover, we show that SGS fluxes diagnosed from data, presumed the “truth” for discovery, depend on filtering procedures and are not unique. Accordingly, to learn accurate, stable closures in future work, we propose several ideas around using physics‐informed libraries, loss functions, and metrics. These findings are relevant to closure modeling of any multi‐scale system.

Funder

Office of Naval Research Global

National Science Foundation

Gaussian

Center for Strategic Scientific Initiatives, National Cancer Institute

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3