Climbing down Charney’s ladder: machine learning and the post-Dennard era of computational climate science

Author:

Balaji V.12ORCID

Affiliation:

1. Princeton University and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

2. Institute Pierre-Simon Laplace, Paris, France

Abstract

The advent of digital computing in the 1950s sparked a revolution in the science of weather and climate. Meteorology, long based on extrapolating patterns in space and time, gave way to computational methods in a decade of advances in numerical weather forecasting. Those same methods also gave rise to computational climate science, studying the behaviour of those same numerical equations over intervals much longer than weather events, and changes in external boundary conditions. Several subsequent decades of exponential growth in computational power have brought us to the present day, where models ever grow in resolution and complexity, capable of mastery of many small-scale phenomena with global repercussions, and ever more intricate feedbacks in the Earth system. The current juncture in computing, seven decades later, heralds an end to what is called Dennard scaling, the physics behind ever smaller computational units and ever faster arithmetic. This is prompting a fundamental change in our approach to the simulation of weather and climate, potentially as revolutionary as that wrought by John von Neumann in the 1950s. One approach could return us to an earlier era of pattern recognition and extrapolation, this time aided by computational power. Another approach could lead us to insights that continue to be expressed in mathematical equations. In either approach, or any synthesis of those, it is clearly no longer the steady march of the last few decades, continuing to add detail to ever more elaborate models. In this prospectus, we attempt to show the outlines of how this may unfold in the coming decades, a new harnessing of physical knowledge, computation and data. This article is part of the theme issue ‘Machine learning for weather and climate modelling’.

Funder

National Oceanic and Atmospheric Administration

Agence Nationale de la Recherche

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference72 articles.

1. Scientific computing in the age of complexity

2. History and Epistemology of Models: Meteorology (1946-1963) as a Case Study

3. The quiet revolution of numerical weather prediction

4. Cressman GP. 1996 The origin and rise of numerical weather prediction. In Historical essays on meteorology 1919–1995: the diamond anniversary history volume of the American meteorological society (ed JR Fleming) pp. 21–39. Boston MA: American Meteorological Society.

5. SECTION OF PLANETARY SCIENCES: THE PREDICTABILITY OF HYDRODYNAMIC FLOW*,†

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3