Interpretable Structural Model Error Discovery From Sparse Assimilation Increments Using Spectral Bias‐Reduced Neural Networks: A Quasi‐Geostrophic Turbulence Test Case

Author:

Mojgani Rambod1ORCID,Chattopadhyay Ashesh12,Hassanzadeh Pedram13ORCID

Affiliation:

1. Departments of Mechanical Engineering Rice University Houston TX USA

2. Department of Applied Mathematics University of California, Santa Cruz Santa Cruz CA USA

3. Departments of Earth Environmental and Planetary Sciences Rice University Houston TX USA

Abstract

AbstractEarth system models suffer from various structural and parametric errors in their representation of nonlinear, multi‐scale processes, leading to uncertainties in their long‐term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short‐term simulations, for example, as differences between the predicted and observed states (analysis increments). With the increase in the availability of high‐quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data‐hungry, and poorly generalize out‐of‐distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data‐efficient framework that uses sparsity‐promoting equation‐discovery techniques to learn model errors from analysis increments. Using two‐layer quasi‐geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations.

Funder

Schmidt Futures

Publisher

American Geophysical Union (AGU)

Reference84 articles.

1. A Hybrid Atmospheric Model Incorporating Machine Learning Can Capture Dynamical Processes Not Captured by Its Physics‐Based Component

2. Tropical anvil cirrus are highly sensitive to ice microphysics within a nudged global storm‐resolving model;Atlas R.;Authorea Preprints,2023

3. Machine Learning for Model Error Inference and Correction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3