Diagram comprehension ability of college students in an introductory biology course

Author:

Kottmeyer Alexa M.1ORCID,Van Meter Peggy1,Cameron Chelsea1

Affiliation:

1. The Pennsylvania State University, University Park, Pennsylvania

Abstract

College biology courses commonly use diagrams to convey information. These visual representations are embedded in course materials with the expectation that students can comprehend and learn from them. Educational research, however, suggests that many students have difficulty understanding diagrams and the conventions (e.g., labels, arrows) they contain. The present study evaluates biology students’ ability to comprehend scientific diagrams and the diagram characteristics that affect this comprehension. Participants were students in a physiology course who completed a multiple-choice test of diagram comprehension ability (DCA) (Cromley JG, Perez TC, Fitzhugh SL, Newcombe NS, Wills TW, Tanaka JC. J Exp Educ 81: 511–537, 2013). We coded the conventions used in each test diagram and used these codes to capture the diagram characteristics of conventions and complexity. Descriptive analyses examine students’ ability to understand scientific diagrams and which diagram characteristics cause the most difficulty. We also compared groups with low and high DCA scores to evaluate how students at different levels of comprehension ability are affected by diagram characteristics. Results show relatively poor DCA; the average total test score was only 69.5%. The conventions used in a diagram also affected diagram comprehension, and results show students had the most difficulty comprehending diagrams using a letter or numbering system, where arbitrary letters/numbers were used to signify objects and diagrams using cut-outs that showed cross sections and magnified interior views. Additionally, students’ comprehension was higher on diagrams with higher complexity (i.e., more types of conventions used), potentially indicating students are able to take advantage of the supports that different conventions provide. Implications for instruction are identified.

Funder

Penn State University Schreyer Institute for Teaching Excellence Teaching Grant Program

Penn State Eberly College of Science Biology Department

Publisher

American Physiological Society

Subject

General Medicine,Physiology,Education

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3