Loci of Points Equally Spaced from Two Given Geometrical Figures. Part 2: Loci of Points Equally Spaced from a Point and a Conical Surface

Author:

Вышнепольский Владимир1,Vyshnepol'skiy Vladimir2,Заварихина Е.3,Zavarihina E.4,Даллакян О.1,Dallakyan O.2

Affiliation:

1. Московский технологический университет

2. Moscow Technological University

3. Московский авиационный институт (национальный исследовательский университет)

4. Moscow Aviation Institute (National Research University)

Abstract

In this paper are studied surfaces which are loci of points (LOP) equally spaced from a point and a conical surface under a variety of the point and conical surface’ mutual arrangement. Mathematical models of such surfaces are studied, and mathematical analysis of their properties is performed, as well as 3D models of considered surfaces are constructed. Possible cases of mutual arrangement for the point and the conical surface: • the point is at the conical surface’s vertex; • the point is on the conical surface; • the point is inside the conical surface: –– on the axis, –– not on the axis; • the point is outside the conical surface. The point is on the vertex of the conical surface Γ — the obtained conical surface Ω has the same vertex, whose generatrixes are perpendicular to the generatrixes of the surface Γ. The point is on the conical surface Γ — LOP equally spaced from the surface Γ and the point O separates into a straight-line l and a surface Φ of 4th order. The line l is located in the axial plane passing through the point O and is perpendicular to the generatrix of the conical surface Γ. Obtained surface Φ has a symmetry plane passing through the axis of the conical surface Γ and the point O. Many sections of the obtained surface Φ are Pascal snails. The point is inside the conical surface on the axis. Obtained surface α is a rotation surface, and the axis z is its axis of rotation. All the sections of the surface by planes perpendicular to the axis z are circles. Point is outside the conical surface. A very interesting surface Ω has been obtained, with the following properties: the surface Ω has a support plane, which is tangent to the surface Ω on a hyperbole; the surface Ω has 2 symmetry planes; there are a circle, parabola and Pascal’s snail among the surface Ω sections. In this paper have been considered analogues between surfaces of LOP equally spaced from the cylindrical surface and the point, and from the conical surface and the point.

Publisher

Infra-M Academic Publishing House

Reference21 articles.

1. Александров И.И. Сборник геометрических задач на построение с решениями [Текст] / И.И. Александров. — М.: УРСС 2004. — 176 с., Aleksandrov I.I. Sbornik geometricheskih zadach na postroenie s resheniyami [Collection of geometric construction problems with solutions]. Moscow, URSS Publ., 2004. 176 p. (in Russian).

2. Волков В.Я. Сборник задач и упражнений по начертательной геометрии (к учебнику «Курс начертательной геометрии на основе геометрического моделирования») [Текст] / В.Я. Волков [и др.]. — Омск: СИБАДИ, 2010. — 74 с., Volkov V.YA. Sbornik zadach i uprazhnenij po nachertatel'noj geometrii (k uchebniku «Kurs nachertatel'noj geometrii na osnove geometricheskogo modelirovaniya») [Collection of tasks and problems on descriptive geometry (for the textbook “Descriptive geometry course on the basis of geometrical modeling”)]. Omsk, SIBADI Publ., 2010. 74 p. (in Russian).

3. Выгодский М.Я. Аналитическая геометрия [Текст] / М.Я. Выгодский. — М.: Физматгиз, 1963. — 523 с., Vygodskij M.YA. Analiticheskaya geometriya [Analytical geometry]. Moscow, Fizmatgiz Publ., 1963. 523 p. (in Russian).

4. Вышнепольский В.И. Всероссийский студенческий конкурс «Инновационные разработки» [Текст] / В.И. Вышнепольский, Н.С. Кадыкова, Н.И. Прокопов // Геометрия и графика. — 2016. — Т. 4. — № 4. — С. 69–86. — DOI: 10.12737/22842., Vyshnepol'skij V.I. Vserossijskij studencheskij konkurs «Innovacionnye razrabotki» [Panrussian student competition “Innovative developments”]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 4, pp. 69–86. (in Russian).

5. Вышнепольский В.И. Геометрические места точек, равноотстоящих от двух заданных геометрических фигур. Часть 1 [Текст] / В.И. Вышнепольский, Н.А. Сальков, Е.В. Заварихина // Геометрия и графика. — 2017. — Т. 5. — № 3. — С. 21–35. — DOI: 10.12737/22842., Vyshnepol'skij V.I. Geometricheskie mesta tochek, ravnootstoyashchih ot dvuh zadannyh geometricheskih figur. CHast' 1 [Geometric locations of the points equally spaced from two given geometric figures]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 3, pp. 21–35. (in Russian).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3