Loci of Points Equally Spaced From Two Given Geometrical Figures. Part 1

Author:

Вышнепольский Владимир1,Vyshnyepolskiy Vladimir2,Сальков Николай3,Sal'kov Nikolay4,Заварихина Е.5,Zavarihina E.6

Affiliation:

1. Московский технологический университет

2. Moscow Technological University

3. Московский государственный академический художественный институт имени В.И. Сурикова

4. Moscow State Academic Art Institute named after V.I. Surikov

5. Московский авиационный институт (национальный исследовательский университет)

6. Moscow Aviation Institute (National Research University)

Abstract

Loci of points (LOP) equally spaced from two given geometrical figures are considered. Has been proposed a method, giving the possibility to systematize the loci, and the key to their study. The following options have been considered. A locus equidistant from N point and l straight line. N belongs to l. We have a plane that is perpendicular to l and passing through N. N does not belong to l – parabolic cylinder. A locus equidistant from F point and a plane. In the general case, we have a paraboloid of revolution. The F point belongs to the given plane. We get a straight line perpendicular to the plane and passing through the F point. A locus equidistant from a point and a sphere. The point coincides with the sphere center. We get the sphere with a radius of 0.5 R. The point lies on the sphere. We get the straight line passing through the sphere center and the point. The point does not coincide with the sphere center, but is inside the sphere. We get the ellipsoid. The point is outside the sphere. We have parted hyperboloid of rotation. A locus equidistant from a point and a cylindrical surface. The point lies on the cylindrical surface’s axis. We get the surface of revolution which generatix is a parabola. The point lies on the generatrix of the cylindrical surface of rotation. We get a straight line, perpendicular to that generatrix and passing through the cylinder axis. The point does not lie on the axis, but is located inside the cylindrical surface. We get the surface with a horizontal sketch line – the ellipse, and a front sketch lines – two different parabolas. The point is outside the cylindrical surface. A locus consists of two surfaces. The one with the positive Gaussian curvature, and the other – with the negative one.

Publisher

Infra-M Academic Publishing House

Reference23 articles.

1. Волков В.Я. Сборник задач и упражнений по начертательной геометрии (к учебнику «Курс начертательной геометрии на основе геометрического моделирования») [Текст] / В.Я. Волков, В.Ю. Юрков, К.Л. Панчук, Н.В. Кайгородцева. — Омск: СИБАДИ, 2010. — 74 с., Volkov V.Ja., Jurkov V.Ju., Panchuk K.L., Kajgorodceva N.V. Sbornik zadach i uprazhnenij po nachertatel'noj geometrii (k uchebniku «Kurs nachertatel'noj geometrii na osnove geometricheskogo modelirovanija») [Collection of problems and exercises on descriptive geometry (to the textbook "the Course of descriptive geometry on the basis of geometric modeling")]. Omsk: SIBADI Publ., 2010. 74 p. (in Russian)

2. Гирш А.Г. Как решать задачу. Методические указания по решению задач повышенной сложности [Текст] / А.Г. Гирш. — Омск: СИБАДИ, 1986. — 36 с., Girsh A.G. Kak reshat' zadachu. Metodicheskie ukazanija po resheniju zadach povyshennoj slozhnosti [How to solve the problem. Guidelines for solving problems of high complexity]. Omsk: SIBADI Publ., 1986. 36 p. (in Russian).

3. Елисеев Н.А. Этюды по начертательной геометрии профессора Д.И. Каргина. Совершенствование подготовки учащихся и студентов в области графики, конструирования и стандартизации [Текст] / Н.А. Елисеев // Межвузовский научно-методический сборник. — Саратов: СГТУ, 2004. — С. 56–58., Eliseev N.A. Jetjudy po nachertatel'noj geometrii professora D.I. Kargina. Sovershenstvovanie podgotovki uchashhihsja i studentov v oblasti grafiki, konstruirovanija i standartizacii [Essays on descriptive geometry by Professor D.I. Kargin. Improving the training of pupils and students in the field of graphics, design and standardization]. Mezhvuzovskij nauchno-metodicheskij sbornik [Interuniversity scientific-methodical collection]. Saratov: SGTU Publ., 2004, pp. 56–58. (in Russian).

4. Иванов Г.С. Начертательная геометрия. — 3-е изд. [Текст] / Г.С. Иванов. — М: ФГБОУ ВПО МГУЛ, 2012. — 340 с., Ivanov G.S. Nachertatel'naja geometrija [Descriptive geometry]. Moscow, FGBOU VPO MGUL Publ., 2012. 340 p. (in Russian).

5. Иванов Г.С. Теоретические основы начертательной геометрии [Текст] / Г.С. Иванов. — М.: Машиностроение, 1998. — 458 с., Ivanov G.S. Teoreticheskie osnovy nachertatel'noj geometrii [Theoretical foundations of descriptive geometry]. Moscow, Mashinostroenie Publ., 1998. 458 p. (in Russian).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3