Loci Equidistant from Two Given Geometric Figures. Part 5: Loci Equidistant from a Sphere and a Plane

Author:

Vyshnyepolskiy Vladimir1,Zavarihina E.2,Egiazaryan K.1

Affiliation:

1. Moscow Technological University

2. Moscow Aviation Institute (National Research University)

Abstract

In this paper have been investigated the loci equidistant from sphere and plane, and properties of obtained surfaces have been studied. Four options for possible mutual arrangement of plane and sphere have been considered: the plane passes through the center of the sphere; the plane intersects the sphere; the plane is tangent to the sphere; the plane passes outside the sphere. In all options of the mutual arrangement of the sphere and the plane, the loci are two surfaces - two coaxial confocal paraboloids of revolution. The general properties of the obtained paraboloids of revolution have been studied: foci and vertices positions, axes of rotation, the distance from the sphere center to the vertices of the paraboloids, the distance between the vertices of the paraboloids, and the position of the directorial planes have been defined. Have been derived equations for the surfaces of the loci equidistant from the sphere and the plane: various paraboloids of revolution. The loci in each of the four options for the possible mutual arrangement of the plane and the sphere are as follows. 1. The original plane passes through the sphere center – two coaxial confocal multidirectional paraboloids of revolution symmetric relative to the original plane. 2. The initial plane intersects the sphere – two coaxial confocal multidirectional but not symmetrical paraboloids of revolution, since the circle of intersection of the plane and the sphere does not coincide with the diameter of the sphere great circle. 3. The plane is tangent to the sphere – a paraboloid of revolution and a straight line (more precisely, a second order zero-quadric – a cylindrical surface with zero radius) passing through the tangency point of the plane and the sphere and the sphere center. 4. The plane passes outside the sphere – the equidistant loci will be two coaxial confocal unidirectional paraboloids of revolution.

Publisher

Infra-M Academic Publishing House

Subject

General Medicine

Reference47 articles.

1. Адамян В.Г. Геометрическое место точек с постоянным отношением направленного расстояния до фиксированной прямой к расстоянию до фокуса [Текст] / В.Г. Адамян, Г.Д. Анамов // Прикладная геометрия и инженерная графика. — 1977. — Вып. 23. — С. 108-111., Adamyan V.G. Geometricheskoe mesto tochek s postoyannym otnosheniem napravlennogo rasstoyaniya do fiksirovannoy pryamoy k rasstoyaniyu do fokusa [Tekst] / V.G. Adamyan, G.D. Anamov // Prikladnaya geometriya i inzhenernaya grafika. — 1977. — Vyp. 23. — S. 108-111.

2. Анамов Г.Д. Применение пространственных геометрических мест в начертательной геометрии [Текст] / диссертация на соискание ученой степени кандидата технических наук / Г.Д. Анамов. — Киев, 1945. — 150 с., Anamov G.D. Primenenie prostranstvennyh geometricheskih mest v nachertatel'noy geometrii [Tekst] / dissertaciya na soiskanie uchenoy stepeni kandidata tehnicheskih nauk / G.D. Anamov. — Kiev, 1945. — 150 s.

3. Волков В.Я. Курс начертательной геометрии на основе геометрического моделирования. Учебник [Текст] / В.Я. Волков — Омск: СибАДИ, 2010. — 252с., Volkov V.Ya. Kurs nachertatel'noy geometrii na osnove geometricheskogo modelirovaniya. Uchebnik [Tekst] / V.Ya. Volkov — Omsk: SibADI, 2010. — 252s.

4. Волков В.Я. Сборник задач и упражнений по начертательной геометрии (к учебнику «Курс начертательной геометрии на основе геометрического моделирования») [Текст] / В.Я. Волков, В.Ю. Юрков, К.Л. Панчук, Н.В. Кайгородцева. — Омск: СИБАДИ, 2010. — 74 с., Volkov V.Ya. Sbornik zadach i uprazhneniy po nachertatel'noy geometrii (k uchebniku «Kurs nachertatel'noy geometrii na osnove geometricheskogo modelirovaniya») [Tekst] / V.Ya. Volkov, V.Yu. Yurkov, K.L. Panchuk, N.V. Kaygorodceva. — Omsk: SIBADI, 2010. — 74 s.

5. Выгодский М.Я. Справочник по высшей математике [Текст] / М.Я. Выгодский. — М.: АСТ: Астрель, 2008. — 509 с., Vygodskiy M.Ya. Spravochnik po vysshey matematike [Tekst] / M.Ya. Vygodskiy. — M.: AST: Astrel', 2008. — 509 s.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3