Geometric modeling and study of properties of surfaces equidistant to two spheres

Author:

Vyshnepolsky V I,Kadykova N S,Peh D S

Abstract

Abstract The paper considers the geometric locus of points equidistant to two spheres of different diameters. If these spheres are concentric, the sought multitude constitutes a single surface – a sphere of diameter equal to arithmetic mean of the diameters of the given spheres. In other cases the geometric locus of points equidistant to two spheres of different diameters constitutes two surfaces. In case the spheres intersect, are tangent or distant to each other, the first of these surfaces is a two-sheet hyperboloid of revolution that degenerates into a plane in case the spheres are equal. In case the spheres intersect, the second of the surfaces is an ellipsoid of revolution that degenerates into a straight line if the spheres are tangent to each other. In the case of distant spheres, the second of the surfaces is a two-sheet hyperboloid of revolution. In case the spheres contain one another, the sough geometric locus constitutes two co-axial co-focused ellipsoids of revolution. The equations defining the mentioned surfaces are presented. The regularities in shape and location of these surfaces were studied; the formulas for the major and the minor axes of the ellipsoids and the vertices of the two-sheet hyperboloids of revolution were derived.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference9 articles.

1. Velocity field of image points in satellite imagery of planet’s surface;Gecha;Russian Technological Journal,2020

2. A Sierpiński triangle geometric algorithm for generating stronger structures;Zhikharev;J. Phys.: Conf. Ser.,2021

3. Application of the Dupin cyclide in temple architecture;Salkov;J. Phys.: Conf. Ser.,2020

4. Mass-centering characteristics of solids within quasi-rotation surfaces;Beglov;J. Phys.: Conf. Ser.,2021

5. Dupin Cyclide and Second-Order Curves. Part 1;Salkov;Geometry and Graphics,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3