High-field/high-frequency electron spin resonances of Fe-doped βGa2O3 by terahertz generalized ellipsometry: Monoclinic symmetry effects

Author:

Richter Steffen12ORCID,Knight Sean12ORCID,Bulancea-Lindvall Oscar2ORCID,Mu Sai34ORCID,Kühne Philipp2ORCID,Stokey Megan5ORCID,Ruder Alexander5ORCID,Rindert Viktor1ORCID,Ivády Viktor267ORCID,Abrikosov Igor A.2ORCID,Van de Walle Chris G.3ORCID,Schubert Mathias15ORCID,Darakchieva Vanya12ORCID

Affiliation:

1. Lund University

2. Linköping University

3. University of California, Santa Barbara

4. University of South Carolina

5. University of Nebraska-Lincoln

6. Eötvös Loránd University

7. Pázmány Péter

Abstract

We demonstrate detection and measurement of electron paramagnetic spin resonances (EPR) of iron defects in βGa2O3 utilizing generalized ellipsometry at frequencies between 110 and 170 GHz. The experiments are performed on an Fe-doped single crystal in a free-beam configuration in reflection at 45 and magnetic fields between 3 and 7 T. In contrast with low-field, low-frequency EPR measurements, we observe all five transitions of the s=5/2 high-spin state Fe3+ simultaneously. We confirm that ferric Fe3+ is predominantly found at octahedrally coordinated Ga sites. We obtain the full set of fourth-order monoclinic zero-field splitting parameters for both octahedrally and tetrahedrally coordinated sites by employing measurements at multiple sample azimuth rotations. The capability of high-field EPR allows us to demonstrate that simplified second-order orthorhombic spin Hamiltonians are insufficient, and fourth-order terms as well as consideration of the monoclinic symmetry are needed. These findings are supported by computational approaches based on density-functional theory for second-order and on ligand-field theory for fourth-order parameters of the spin Hamiltonian. Terahertz ellipsometry is a way to measure spin resonances in a cavity-free setup. Its possibility of varying the probe frequency arbitrarily without otherwise changing the experimental setup offers unique means of truly disentangling different components of highly anisotropic spin Hamiltonians. Published by the American Physical Society 2024

Funder

Knut och Alice Wallenbergs Stiftelse

Vetenskapsrådet

National Science Foundation

Air Force Office of Scientific Research

Energimyndigheten

VINNOVA

Stiftelsen för Strategisk Forskning

Linköpings Universitet

J. A. Woollam Foundation

National Research, Development and Innovation Office

Office of Science

Materials Research Science and Engineering Center, Harvard University

San Diego Supercomputer Center

Publisher

American Physical Society (APS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3