Classification of fresh and processed strawberry cultivars based on quality characteristics by using support vector machine and extreme learning machine

Author:

Bao Rui1,Chen Weina1,Tang Guixian1,Chen Honghong2,Sun Zhijian1,Chen Fang1

Affiliation:

1. College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing,Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China

2. Department of Basic Course Teaching, Vocational and Technical College, Inner Mongolia Agricultural University, Inner Mongolia, China

Abstract

BACKGROUND: Classification of fresh and processing strawberry cultivars is important to make the best utilization of different cultivars in processing. The aim of the study was to investigate whether support vector machine (SVM) and extreme learning machine (ELM) could assist the classification of 15 strawberry cultivars. Twenty-two characteristic indexes were analyzed, including not only appearance indexes but also nutritional indexes. RESULTS: The results showed that classification accuracies of 100% and 88.52% were obtained by using SVM and ELM with 3-fold cross validation, respectively. Moreover, seven characteristic variables extracted from 22 quality indexes by SVM could make it possible to determine the adaptability of a particular cultivar by measuring relatively small number of indexes. CONCLUSION: Both ELM and SVM models are feasible to identify fresh and processing cultivars. However, SVM showed better performance for its accuracy and simplicity, indicating that SVM would be a good choice for classification of strawberry cultivars.

Publisher

IOS Press

Subject

Horticulture,Plant Science,Soil Science,Agronomy and Crop Science,Biochemistry,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3