Device modeling of two-steps oxygen anneal-based submicron InGaZnO back-end-of-line field-effect transistor enabling short-channel effects suppression

Author:

Kim Donguk,Kim Je-Hyuk,Choi Woo Sik,Yang Tae Jun,Jang Jun Tae,Belmonte Attilio,Rassoul Nouredine,Subhechha Subhali,Delhougne Romain,Kar Gouri Sankar,Lee Wonsok,Cho Min Hee,Ha Daewon,Kim Dae Hwan

Abstract

AbstractAmorphous oxide semiconductor (AOS) field-effect transistors (FETs) have been integrated with complementary metal-oxide-semiconductor (CMOS) circuitry in the back end of line (BEOL) CMOS process; they are promising devices creating new and various functionalities. Therefore, it is urgent to understand the physics determining their scalability and establish a physics-based model for a robust device design of AOS BEOL FETs. However, the advantage emphasized to date has been mainly an ultralow leakage current of these devices. A device modeling that comprehensively optimizes the threshold voltage (VT), the short-channel effect (SCE), the subthreshold swing (SS), and the field-effect mobility (µFE) of short-channel AOS FETs has been rarely reported. In this study, the device modeling of two-steps oxygen anneal-based submicron indium-gallium-zinc-oxide (IGZO) BEOL FET enabling short-channel effects suppression is proposed and experimentally demonstrated. Both the process parameters determining the SCE and the device physics related to the SCE are elucidated through our modeling and a technology computer-aided design (TCAD) simulation. In addition, the procedure of extracting the model parameters is concretely supplied. Noticeably, the proposed device model and simulation framework reproduce all of the measured current–voltage (I–V), VT roll-off, and drain-induced barrier lowering (DIBL) characteristics according to the changes in the oxygen (O) partial pressure during the deposition of IGZO film, device structure, and channel length. Moreover, the results of an analysis based on the proposed model and the extracted parameters indicate that the SCE of submicron AOS FETs is effectively suppressed when the locally high oxygen-concentration region is used. Applying the two-step oxygen annealing to the double-gate (DG) FET can form this region, the beneficial effect of which is also proven through experimental results; the immunity to SCE is improved as the O-content controlled according to the partial O pressure during oxygen annealing increases. Furthermore, it is found that the essential factors in the device optimization are the subgap density of states (DOS), the oxygen content-dependent diffusion length of either the oxygen vacancy (VO) or O, and the separation between the top-gate edge and the source-drain contact hole. Our modeling and simulation results make it feasible to comprehensively optimize the device characteristic parameters, such as VT, SCE, SS, and µFE, of the submicron AOS BEOL FETs by independently controlling the lateral profile of the concentrations of VO and O in two-step oxygen anneal process.

Funder

Samsung Electronics Co., Ltd

National Research Foundation of Korea

National Research Foundation of Korea,South Korea

the Institute of Information and Communications Technology Planning and Evaluation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3