Author:
Hong Hyunmin,Kim Min Jung,Yi Dong-Joon,Moon Yeon-Keon,Son Kyoung-Seok,Lim Jun Hyung,Jeong KwangSik,Chung Kwun-Bum
Abstract
AbstractThis work investigates the function of the oxygen partial pressure in photo-induced current measurement of extended defect properties related to the distribution and quantity of defect states in electronic structures. The Fermi level was adjusted by applying a negative gate bias in the TFT structure, and the measurable range of activation energy was extended to < 2.0 eV. Calculations based on density functional theory are used to investigate the changes in defect characteristics and the role of defects at shallow and deep levels as a function of oxygen partial pressure. Device characteristics, such as mobility and threshold voltage shift under a negative gate bias, showed a linear correlation with the ratio of shallow level to deep level defect density. Shallow level and deep level defects are organically related, and both defects must be considered when understanding device characteristics.
Funder
Samsung Display Co., Ltd.
Ministry of Trade, Industry and Energy
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献