The Effect of Plasma Damage on the Material Composition and Electrical Performance of Different Generations of SiOC(H) Low k Films

Author:

Humbert Aurelie,Badaroglu Didem Ernur,Hoofman Romano J.O.M

Abstract

AbstractThe degradation of SiOC(H) low-k films upon plasma treatments has been investigated. Three generations of SiOC(H) low-k dielectrics (k=3.0, k=2.6 and k=2.3) were used. The low-k materials have been exposed to N2O, NH3, O2, H2, He, Ar and N2 based plasmas, representing the most commonly-used plasmas during interconnect integration. For all plasma-treated samples, an increase in k-value and decrease in breakdown voltage was observed. These observations could be attributed to chemical degradation, in particular to carbon depletion and OH-bond formation. The latter leads to moisture adsorption, which was confirmed by contact angle measurements and FTIR spectra. The N2O plasma treatment was found to be the most aggressive for all low-k dielectrics studied. It drastically increases the k-value and the leakage current and results in complete carbon removal on the top-surface. This effect is most pronounced on the most porous material. On the other hand, an in-situ helium plasma shortly after low-k deposition enhances the resistance to chemical degradation upon exposure to other plasmas, even for the most aggressive ones. For the argon and reactive pre-clean plasmas, only small compositional changes were observed. In conclusion, it can be said that not only the plasma treatments have to be tuned in accordance with the low k integration requirements, but also attention has to be paid to limit moisture absorption during integration.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference6 articles.

1. Etch and strip induced material modification of porous low-k (k=2.2) dielectric

2. [6] Michelon J. , Hoofman R.J.O.M , IEEE IIRW proceedings 2005

3. X-ray photoelectron spectroscopic study of surface modification of low-k organic materials by plasma treatment

4. [5] Humbert A. , Mage L. , Goldberg C. , Junker K. , Proenca L. , Lhuillier J.B. , proceedings MAM 2005.

5. [1] National Technology roadmap for Semiconductors, Semiconductor Industry Association (2005)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3