Elastic Properties of Nano–Thin Films by Use of Atomic Force Acoustic Microscopy

Author:

Kopycinska-Müller Malgorzata,Striegler Andre,Hürrich Arnd,Köhler Bernd,Meyendorf Norbert,Wolter Klaus Jürgen

Abstract

AbstractAtomic force acoustic microscopy (AFAM) is a non-destructive method able to determine the indentation modulus of a sample with high lateral and depth resolution. We used the AFAM technique to measure the indentation modulus of film-substrate systems Msam and then to extract the value of the indentation modulus of the film Mf. The investigated samples were films of silicon oxide thermally grown on silicon single crystal substrates by use of dry and wet oxidation methods. The thickness of the samples ranged from 7 nm to 28 nm as measured by ellipsometry. Our results clearly show that the values of Msam obtained for the film-substrate systems depended on the applied static load and the film thickness. The observed dependency was used to evaluate the indentation modulus of the film. The values obtained for Mf ranged from 77 GPa to 95 GPa and were in good agreement with values reported in the literature.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3