Evaluation methods of mechanical properties for low-k dielectrics

Author:

Ovchinnikov I. S.1ORCID

Affiliation:

1. MIREA – Russian Technological University

Abstract

This review introduces the study of state-of-art methods for assessing the mechanical properties of insulating materials with low dielectric constant. The main features of measuring Young’s modulus of thin films insulating materials with low dielectric constant are determined by usage of Brillouin light scattering, surface acoustic wave spectroscopy, picosecond laser-acoustic method, ellipsometric porosimetry, nanoindentation and atomic force microscopy in various modes. The author estimated the optimum lateral and optimum depth resolution for each above method. The review analyzes the degree of sample preparation complexity for the measurements by these methods and describes what methods of measurement are destructive for the samples. Besides, the review makes a comparison for the results of evaluating Young’s modulus of insulating materials with low dielectric constant achieved by different methods. Comparative analysis of the methods for assessing mechanical properties lead us to the conclusion that the method of atomic force microscopy is superior to other methods described above, both in lateral (8 nm) and optimum depth (10 nm) resolution. It is shown that due to the small impact force of the atomic force microscope probe on the surface, the method does not have a destructive effect on the sample. In addition, there is no need to create special conditions for the experiment (e.g., the cleanliness level of the premises, the possibility of an experiment under environmental conditions, etc.). This makes the experiment relatively simple in terms of preparing the object of research. It has been also established that the method of atomic force microscopy in the mode of quantitative nanomechanical mapping allows forming a map of the distribution of the Young’s modulus of the insulating material as part of the metallization system of integrated circuits.

Publisher

RTU MIREA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3