Electromigration induced microstructure and morphological changes in eutectic SnPb solder joints

Author:

Lee A.,Ho C.E.,Subramanian K.N.

Abstract

Simultaneous direct current stressing with thermal aging accelerates the migration of conducting species resulting in significant microstructural coarsening. Because of the synergistic fields influence, such coarsening begins from the anode and propagates toward the cathode. Prolonged current stressing with 104 A/cm2 at 150 °C causes the inter-lamellar eutectic SnPb to become a two-layer structure, with a Pb-rich layer adjacent to the anode and an Sn-rich layer adjacent to the cathode. This mass movement causes hillock/valley formation, and the extents of such surface undulations increase with increases in the time duration of current stressing as well as with the joint thickness. In thinner solder joints these events occur sooner, although the extents of surface undulations depend on the thickness of joints. In addition, Cu present in the substrate and in the intermetallic layer at the cathode migrates to form Cu6Sn5 within the Sn-rich layer, in a region close to the Pb-rich layer.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference16 articles.

1. Composite lead-free electronic solders.;Guo;J. Mater. Sci.: Mater. Electron.,2007

2. Design of solder joints for fundamental studies on the effects of electromigration.;Ho;J. Mater. Sci.: Mater. Electron.,2007

3. Infrared microscopy of hot spots induced by Joule heating in flip-chip SnAg solder joints under accelerated electromigration

4. Electromigration-induced UBM consumption and the resulting failure mechanisms in flip-chip solder joints

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3