Defect Evolution in Ion Implanted Si: from Point to Extended Defects

Author:

Libertino Sebania,Benton Janet L.,Coffa Salvatore,Eaglesham Dave J.

Abstract

ABSTRACTSeveral recent experiments assessing the role of impurities (C, O), dopants (P, B) and clustering on defect evolution in ion implanted Si are reviewed. Deep level transient spectroscopy measurements were used to analyze the defect structure in a wide range of ion implantation fluences (1×108–5×1013 cm−2) and annealing temperatures (100–800 °C). By using substrates with a different impurity content and comparing ion implanted and electron irradiated Si samples, many interesting features of defect evolution in Si have been elucidated. It is found that only a small percentage, 4–16 % depending on ion mass, of the Frenkel pairs generated by the beam escape direct recombination and is stored into an equal number of room temperature stable vacancy- (V-) and interstitial-type (I-) defect complexes. Identical defect structures and annealing behavior have been measured in ion implanted (1.2 MeV Si, 1×108–1×1010/cm2) and electron irradiated (9.2 MeV to fluences between 1 and 3×1015/cm2) samples in spite of the fact that denser collision cascades are produced by the ions. The O and C content of the substrate plays a major role in determining the point defect migration, the room temperature stable defect structures and their annealing behavior. Annealing at temperatures up to 300 °C produces a concomitant reduction of the I- and V-type defect complexes concentration, demonstrating that defect annihilation occurs preferentially in the bulk. At temperatures above 300 °C, when all V-type complexes have been annealed out, ion implanted samples present a residual I-type damage, storing 2–3 I per implanted ion. This unbalance is not observed in electron irradiated samples and it is a direct consequence of the extra implanted ion. The simple point defect structures produced at low ion fluence (1×108–1×1011 /cm2) anneal at ∼ 550 °C. At higher fluences (∼ 1012–1013/cm2) and for annealing temperatures above 500 °C the deep level spectrum is dominated by two signatures at Ev+0.33 eV and at Ev+0.52 eV that we have associated to Si interstitial clusters. Impurities (C, O and B) play a role in determining nucleation kinetics of these defects, but they are not their main constituents. The dissolution temperature of these clusters indicates that they might store the interstitials that drive transient enhanced diffusion phenomena occurring in the absence of extended defects. Finally, at higher implantation fluence, a signature of extended defects is observed and associated to the presence of {311} defects detected by transmission electron microscopy analyses.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinetics of the end of range damage dissolution in flash-assist rapid thermal processing;Applied Physics Letters;2006-06-05

2. Point defect diffusion and clustering in ion implanted c-Si;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2001-05

3. Direct evidence for 8-interstitial-controlled nucleation of extended defects in c-Si;Applied Physics Letters;2000-12-25

4. Ion Implantation Effect on Dislocation Propagation in Pseudomorphically Strained P/P+ Silicon;MRS Proceedings;2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3