Ion Implantation Effect on Dislocation Propagation in Pseudomorphically Strained P/P+ Silicon

Author:

Feichtinger Petra,Poust Ben,Fukuto Hiroaki,Sandhu Rajinder,Goorsky Mark S.,Oster Dwain,Rickborn Steve F.,Moreland Jim

Abstract

AbstractWe studied damage evolution and the influence on defect interactions as a function of Si self implantation dose in p/p+ silicon wafers. Highly boron doped 150 mm diameter silicon substrate wafers with a 2.5 μm thick nominally un-doped epitaxial layer (p/p+) were employed. Due to the misfit strain, misfit dislocations formed during the epitaxial growth process around the wafer edges. This localized dislocation distribution was utilized to study the role of the implant on both the nucleation and growth of the misfit dislocation segments. Triple axis x-ray diffraction was used to determine changes to the strain in the layer due to both the implant and to subsequent annealing. Double axis x-ray topography combined with rapid thermal annealing was used to measure the nucleation and extension of the misfit dislocation segments after annealing. For the lower implantation dose (1012 cm−2) samples, the velocity of dislocations was reduced measurably and the density of newly formed misfit dislocations also decreased significantly relative to regions that received no ion implantation. A higher implantation dose reduced the nucleation and glide velocity further such that neither glide nor nucleation of new segments was detected. SIMS measurements confirmed that the interfacial lattice parameter grading was not appreciably different after an anneal step for the lower implant dose sample, but was measurable for the higher dose sample. In the latter case, transient point defect enhanced diffusion of boron was responsible for the grading. However, the lack of grading in the low dose sample indicates that interfacial grading did not significantly impede dislocation kinetics. This comparison indicates that it is the excess point defects that are produced during implantation that retard both the nucleation and extension of misfit dislocation segments.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3