Interfacial reactions of Sn–Cu and Sn–Pb–Ag solder with Au/Ni during extended time reflow in ball grid array packages

Author:

Islam M.N.,Chan Y.C.,Sharif A.

Abstract

Lead-free solders with high Sn content cause excessive interfacial reactions at the interface with under-bump metallization during reflow. The interface formed after reflow affects the reliability of the solder joint. For this paper, we investigated the interfacial reactions of Sn0.7Cu and Sn36Pb2Ag solder on electrolytic Ni layer for different reflow times. The traditionally used Sn36Pb2Ag solder was used as a reference. It was found that during as-reflowed, the formation of Cu-rich Sn–Cu–Ni ternary intermetallic compounds (TIMCs) at the interface of Sn0.7Cu solder with electrolytic Ni is much quicker, resulting in the entrapment of some Pb (which is present as impurity in the Sn–Cu solder) rich phase in the TIMCs. During extended time of reflow, high (>30 at.%), medium (30-15 at.%) and low (<15 at.%) Cu TIMCs formed at the interface. The amount of Cu determined the growth rate of TIMCs. Cu-rich TIMCs had higher growth rate and consumed more Ni layer. By contrast, the growth rate of the Ni–Sn binary intermetallic compounds (BIMCs) in the Sn36Pb2Ag solder joint was slower, and the Ni–Sn BIMC was more stable and adherent. The dissolution rate of electrolytic Ni layer for Sn0.7Cu solder joint was higher than the Sn36Pb2Ag solder joints. Less than 3 μm of the electrolytic Ni layer was consumed during molten reaction by the higher Sn containing Sn0.7Cu solder in 180 min at 250 °C. The shear strength of Sn–Pb–Ag solder joints decreased within 30 min of reflow time from 1.938 to 1.579 kgf due to rapid formation of ternary Ni–Sn–Au compounds on the Ni–Sn BIMCs. The shear strength of Sn0.7Cu solder joint is relatively stable from 1.982 to 1.861 kgf during extended time reflow. Cu prevents the resettlement of Au at the interface. The shear strength does not depend on the thickness of intermetallic compounds (IMCs) and reflow time. Ni/Sn–Cu solder system has higher strength and can be used during prolonged reflow.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3