Incipient yielding behavior during indentation for gold thin films before and after annealing

Author:

Miller David C.,Talmage Mellisa J.,Gall Ken

Abstract

We studied the deformation mechanisms and mechanics during indentation of polycrystalline gold thin films at depths below 100 nm. The measured material hardness decreased from 2.1 ± 0.1 to 1.7 ± 0.1 GPa after annealing for 4 h at 177 °C. Upon closer inspection, the hardness trends in the gold thin films were discovered to vary according to the indentation depth. At nanometer depths, the material hardness was quantified using multiple parameters, some of which were independent of the area calibration for the tip. The annealed specimen was very “hard” at low indentation depths, relatively soft at moderate indentation depths, and finally harder until the grain-size limit was reached. The as-deposited specimen demonstrated a relatively continuous harness trend as function of indentation depth, exhibiting monotonic convergence to Hall–Petch limited behavior. Discrete displacement jump events (excursions or “pop-ins”) were frequently observed for the annealed specimen but not for the as-deposited specimen. Variation in hardness, excursion activity, and displacement during the hold at maximum load was observed according to the applied loading, which was parametrically varied at constant strain rates. Hardness results are explained in terms of the population and evolution of defects present within the specimens. The population of point defects is also influential, and critical thermal fluctuations, as well as the thermally activated process of diffusion, are believed to influence hardness at the specimen’s free surface and further into its volume. After converging to a monotonic trend (proper tip engagement), the modulus of the gold was measured to be 106.0 ± 12.9 and 101.3 ± 6.0 GPa for the respective Au/Cr/Si specimens. These values exceeded predictions from the aggregate polycrystalline material theory, a representation used to estimate results for anisotropic single crystals. Exaggerated modulus measurements are explained as the result of the contribution of modulus mismatch with the substrate, pileup at the indentor tip, residual stress in the films, and crystallographic anisotropy of the gold.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3