Author:
Ohmura Takahito,Wakeda Masato
Abstract
The attractive strain burst phenomenon, so-called “pop-in”, during indentation-induced deformation at a very small scale is discussed as a fundamental deformation behavior in various materials. The nanoindentation technique can probe a mechanical response to a very low applied load, and the behavior can be mechanically and physically analyzed. The pop-in phenomenon can be understood as incipient plasticity under an indentation load, and dislocation nucleation at a small volume is a major mechanism for the event. Experimental and computational studies of the pop-in phenomenon are reviewed in terms of pioneering discovery, experimental clarification, physical modeling in the thermally activated process, crystal plasticity, effects of pre-existing lattice defects including dislocations, in-solution alloying elements, and grain boundaries, as well as atomistic modeling in computational simulation. The related non-dislocation behaviors are also discussed in a shear transformation zone in bulk metallic glass materials and phase transformation in semiconductors and metals. A future perspective from both engineering and scientific views is finally provided for further interpretation of the mechanical behaviors of materials.
Funder
Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
Subject
General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献