Identification of Elastoplastic Constitutive Model of GaN Thin Films Using Instrumented Nanoindentation and Machine Learning Technique

Author:

Khalfallah Ali123ORCID,Khalfallah Amine4,Benzarti Zohra15ORCID

Affiliation:

1. CEMMPRE, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal

2. Laboratoire de Génie Mécanique, École Nationale d’Ingénieurs de Monastir, Université de Monastir, Av. Ibn El-Jazzar, Monastir 5019, Tunisia

3. DGM, Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, Université de Sousse, Cité Ibn Khaldoun, Sousse 4003, Tunisia

4. Departamento de Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Pólo II—Pinhal de Marrocos, 3030-290 Coimbra, Portugal

5. Laboratory of Multifunctional Materials and Applications (LaMMA), Department of Physics, Faculty of Sciences of Sfax, University of Sfax, Soukra Road km 3.5, B.P. 1171, Sfax 3000, Tunisia

Abstract

This study presents a novel inverse identification approach to determine the elastoplastic parameters of a 2 µm thick GaN semiconductor thin film deposited on a sapphire substrate. This approach combines instrumented nanoindentation with finite element (FE) simulations and an artificial neural network (ANN) model. Experimental load–depth curves were obtained using a Berkovich indenter. To generate a comprehensive database for the inverse analysis, FE models were constructed to simulate load–depth responses across a wide range of GaN thin film properties. The accuracy of both 2D and 3D simulations was compared to select the optimal model for database generation. The Box–Behnken design-based data sampling method was used to define the number of simulations and input variables for the FE models. The ANN technique was then employed to establish the complex mapping between the simulated load–depth curves (input) and the corresponding stress–strain curve (output). The generated database was used to train and test the ANN model. Then, the learned ANN model was used to achieve high accuracy in identifying the stress–strain curve of the GaN thin film from the experimental load–depth data. This work demonstrates the successful application of an inverse analysis framework, combining experimental nanoindentation tests, FE modeling, and an ANN model, for the characterization of the elastoplastic behavior of GaN thin films.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3