Measurement of Thin Film Mechanical Properties Using Nanoindentation

Author:

Pharr G.M.,Oliver W.C.

Abstract

One of the simplest ways to measure the mechanical properties of a thin film is to deform it on a very small scale. Because indentation testing with a sharp indenter is one convenient means to accomplish this, nanoindentation, or indentation testing at the nanometer scale, has become one of the most widely used techniques for measuring the mechanical properties of thin films. Other reasons for the popularity of nanoindentation stem from the ease with which a wide variety of mechanical properties can be measured without removing the film from its substrate and the ability to probe a surface at numerous points and spatially map its mechanical properties. The utility of the mapping capability is illustrated in Figure 1, which shows several small indentations made at selected points in a microelectronic device. The hardness and modulus of the device were determined at each point. In addition to microelectronics, nanoindentation has also proved useful in the study of optical coatings, hard coatings, and materials with surfaces modified by ion implantation and laser treatment.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 791 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3