Electric current-induced abnormal Cu/γ-InSn4 interfacial reactions

Author:

Chen Sinn-wen,Lin Shih-kang

Abstract

The electromigration effect upon the γ-InSn4/Cu interfacial reactions have been studied by examining the γ-InSn4/Cu/γ-InSn4 couples annealed at 160 °C with and without current stressing. Scallop-type η-Cu6(Sn,In)5 phase layers are formed in the couples without current stressing and at the γ-InSn4/Cu interface where electrons are flowing from the γ-InSn4 to the Cu. The reaction path is Cu/η-Cu6(Sn,In)5/γ-InSn4. However, very large η-Cu6(Sn,In)5 compounds are found at the Cu/γ-InSn4 interface where electrons are from Cu to the γ-InSn4. Although the melting points of both γ-InSn4 and Cu are higher than 160 °C, the liquid phase is formed at 160 °C in the electrified couple at the downstream γ-InSn4 phase near the Cu/γ-InSn4 interface. The reaction path is Cu/η-Cu6(Sn,In)5/liquid/γ-InSn4. The liquid phase propagates along the grain boundaries of the γ-InSn4 matrix. The very large η-Cu6(Sn,In)5 compounds are the coupling results of the liquid phase penetration and the Cu transport enhancement due to electromigration.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference23 articles.

1. On the mechanism of the binary Cu/Sn solder reaction.;Schmitz;Appl. Phys. Lett.,2005

2. Phase characterisation and kinetic behaviour of diffusion soldered Cu/In/Cu interconnections

3. Interfacial reactions in In-Sn/Ni couples and phase equilibria of the In-Sn-Ni system

4. 8. Ding M. , Wang G. , Chao B. , Ho P.S. , Su P. , Uehling T. , Wontor D. A study of electromigration failure in Pb-free solder joints (IEEE International Reliability Physics Symposium Proceedings,43rd, Institute of Electrical and Electronics Engineers,San Jose, CA, 2005), p. 518.

5. Electromigration effects upon interfacial reactions

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3