Treated Livestock Wastewater Irrigation Is Safe for Maize (Zea mays) and Soybean (Glycine max) Intercropping System Considering Heavy Metals Migration in Soil–Plant System

Author:

Kama Rakhwe1ORCID,Liu Yuan1,Song Jibin1,Hamani Abdoul Kader Mounkaila1ORCID,Zhao Shouqiang1,Li Siyi1ORCID,Diatta Sekouna2,Yang Fengxia3,Li Zhongyang14ORCID

Affiliation:

1. Institute of Farmland Irrigation of CAAS, Xinxiang 453002, China

2. Laboratory of Ecology, Faculty of Sciences and Technology, Cheikh Anta University of Dakar, Dakar 50005, Senegal

3. Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China

4. National Research and Observation Station of Shangqiu Agro-Ecology System, Shangqiu 476000, China

Abstract

Water deficit is a major problem affecting crop production worldwide. The use of treated wastewater in irrigation systems improves soil health and enhances crop growth and productivity. However, it has been characterized as a source of heavy metals. The unknown is how heavy metals’ movements would be impacted under an intercropping system when irrigated with treated wastewater. Understanding the dynamic of heavy metals in soil–plant systems is essential for environmental risk assessment and sustainable agriculture. A greenhouse pot experiment was conducted to explore the effects of treated wastewater irrigation on plant growth, soil chemical properties, and the movements of Zn, Cu, Pb, and Cd from soil to plants in monoculture and intercropping systems. Maize and soybean were selected as the test crops and groundwater and treated livestock wastewater as the water sources. This study found that treated wastewater irrigation and intercropping systems synergically increased the soil nutrient content and crop growth. The concentrations of Zn, Pb, and Cd were significantly higher in leaves compared to other plant parts contrastingly to Cu, which was higher in roots. In addition, treated wastewater irrigation increased grain nutrient content in mono- and intercropping systems while the concentration of heavy metals was in the acceptable range for human consumption. The enrichment degree of Cu and Pb due to treated livestock wastewater irrigation relative to groundwater irrigation was higher in uncultivated soil compared with cultivated soil. This study showed that the intercropping system facilitated heavy metals’ transfer from soil to plant except for Cd. These findings provide guidelines for a safe utilization of treated wastewater in agricultural systems and to reduce freshwater use pressure.

Funder

National Key Research and Development Program of China

Central Public-interest Scientific Institution Basal Research Fund

National Natural Science Foundation of China

Talent Cultivation Program of Chinese Academy of Agricultural Sciences

Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3