Hyperaccumulator Solanum nigrum L. Intercropping Reduced Rice Cadmium Uptake under a High-Bed and Low-Ditch Planting System

Author:

Kama Rakhwe12ORCID,Ma Qingguang12,Nabi Farhan12ORCID,Aidara Maimouna3,Huang Peiyi12,Li Zhencheng12,He Juxi12,Diatta Sekouna3ORCID,Li Huashou12ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

2. Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China

3. Laboratory of Ecology, Faculty of Sciences and Technology, Cheikh Anta University of Dakar, Dakar 50005, Senegal

Abstract

Anthropogenic activities have raised cadmium (Cd) concentrations in agricultural soil, emerging as a primary catalyst for the decline in crop yield. Intercropping of two or several plants is one technique among many Cd phytoremediation techniques that has gained enormous attention recently. However, the impact of cultivation modes on Cd movement in rice plants when intercropped with heavy metal (HM) hyperaccumulator plants remains unclear. Thus, this study was designed to explore the effects of cultivation modes and the intercropping of rice with Solanum nigrum L. on rice growth and Cd uptake in Cd-contaminated soil. The experimental design encompassed five treatments: dry cultivation of monocultured rice, monocultured Solanum nigrum L., and intercropped rice–Solanum nigrum L.; flood cultivation of monocultured rice; and intercropped rice–Solanum nigrum L. in a high-bed and low-ditch planting system. The results revealed a significant increase in rice growth when intercropped with Solanum nigrum L., with a notable increase of 18.32 g∙plant−1 observed in rice biomass in dry cultivation under the intercropping system. In contrast, a more modest increase of 3.67 g∙plant−1 was observed in the high-bed and low-ditch intercropped rice–Solanum nigrum L. mode. The soil total Cd was higher in dry cultivation of monocultured rice and Solanum nigrum L. compared to intercropped rice/Solanum nigrum L.-cultivated soil, with lower values recorded for intercropped rice/Solanum nigrum L. under the high-bed and low-ditch planting system. In contrast, no significant effect was noted on soil exchangeable Cd content based on the planting pattern and cultivation mode. Intercropping with Solanum nigrum L. demonstrated a significant reduction of Cd content in various rice tissues, particularly in roots at the maturity stage, while Cd content was reduced across all rice tissues under the high-bed and low-ditch planting system. The Cd content in the stem, leaves, and bran of monocropped rice was higher compared to intercropped rice. This study suggests that the rice–Solanum nigrum L. intercropping system effectively reduces rice Cd uptake, particularly under the high-bed and low-ditch planting system.

Funder

National Key R&D Program of China

National Science Foundation of China

Guangdong Provincial Key Discipline Research Capability Improvement Project

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3