Pathways and Estimate of Aquifer Recharge in a Flood Basalt Terrain; A Review from the South Fork Palouse River Basin (Columbia River Plateau, USA)

Author:

Medici Giacomo,Langman Jeff B.ORCID

Abstract

Aquifer recharge is one of the most important hydrologic parameters for understanding available groundwater volumes and making sustainable the use of natural water by minimizing groundwater mining. In this framework, we reviewed and evaluated the efficacy of multiple methods to determine recharge in a flood basalt terrain that is restrictive to infiltration and percolation. In the South Fork of the Columbia River Plateau, recent research involving hydrologic tracers and groundwater modeling has revealed a snowmelt-dominated system. Here, recharge is occurring along the intersection of mountain-front alluvial systems and the extensive Miocene flood basalt layers that form a fractured basalt and interbedded sediment aquifer system. The most recent groundwater flow model of the basin was based on a large physio-chemical dataset acquired in laterally and vertically distinctive locations that refined the understanding of the intersection of the margin alluvium and the spatially variable basalt flows that filled the basin. Modelled effective recharge of 25 and 105 mm/year appears appropriate for the basin’s plain and the mountain front, respectively. These values refine previous efforts on quantifying aquifer recharge based on Darcy’s law, one-dimensional infiltration, zero-flux plane, chloride, storage, and mass-balance methods. Overall, the combination of isotopic hydrochemical data acquired in three dimensions and flow modelling efforts were needed to simultaneously determine groundwater dynamics, recharge pathways, and appropriate model parameter values in a primarily basalt terrain. This holistic approach to understanding recharge has assisted in conceptualizing the aquifer for resource managers that have struggled to understand aquifer dynamics and sustainable withdrawals.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3