A Concept of Fuzzy Dual Permeability of Fractured Porous Media

Author:

Faybishenko Boris1

Affiliation:

1. Energy Geosciences Division, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94708, USA

Abstract

The interpretation of the results of hydrogeological field observations and the modeling of fractured porous subsurface media is often conducted using dual-porosity and/or dual-permeability concepts. These concepts, however, do not consider the effects of spatial and temporal variations and uncertainties, or fuzziness, in the evaluation of the subsurface flow characteristics of fractured porous media. The goal of the paper is to introduce a concept of fuzzy dual permeability of fractured porous media based on the fuzzy system analysis of the results of ponded infiltration tests in fractured basalt. The author revisited the results of the tests conducted in areas close to the Idaho National Laboratory (INL), Idaho, USA: small-scale (approximately 0.5 m2) ponded tests at the Hell’s Half Acre site, mesoscale (56 m2) ponded tests at the Box Canyon site, and a large-scale infiltration test (31,416 m2) at the Radioactive Waste Management Complex at INL. Methods of fuzzy clustering and fuzzy regression were applied to describe the time-depth waterfront penetration and to characterize the phenomena of rapid flow through a predominantly fractured component and slow flow through a predominantly porous matrix component. The concept of fuzzy dual permeability is presented using a series of fuzzy membership functions of the waterfront propagation with depth and time. To describe the time variation of the flux, a fuzzy Horton’s model is presented. The developed concept can be used for the uncertainty quantification in flow and transport in geologic media.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3