Quantum Confinement Effect in Amorphous In–Ga–Zn–O Heterojunction Channels for Thin-Film Transistors

Author:

Koretomo DaichiORCID,Hamada Shuhei,Magari YusakuORCID,Furuta MamoruORCID

Abstract

Electrical and carrier transport properties in In–Ga–Zn–O thin-film transistors (IGZO TFTs) with a heterojunction channel were investigated. For the heterojunction IGZO channel, a high-In composition IGZO layer (IGZO-high-In) was deposited on a typical compositions IGZO layer (IGZO-111). From the optical properties and photoelectron yield spectroscopy measurements, the heterojunction channel was expected to have the type–II energy band diagram which possesses a conduction band offset (ΔEc) of ~0.4 eV. A depth profile of background charge density indicated that a steep ΔEc is formed even in the amorphous IGZO heterojunction interface deposited by sputtering. A field effect mobility (μFE) of bottom gate structured IGZO TFTs with the heterojunction channel (hetero-IGZO TFTs) improved to ~20 cm2 V−1 s−1, although a channel/gate insulator interface was formed by an IGZO−111 (μFE = ~12 cm2 V−1 s−1). Device simulation analysis revealed that the improvement of μFE in the hetero-IGZO TFTs was originated by a quantum confinement effect for electrons at the heterojunction interface owing to a formation of steep ΔEc. Thus, we believe that heterojunction IGZO channel is an effective method to improve electrical properties of the TFTs.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3