Abstract
Electrical and carrier transport properties in In–Ga–Zn–O thin-film transistors (IGZO TFTs) with a heterojunction channel were investigated. For the heterojunction IGZO channel, a high-In composition IGZO layer (IGZO-high-In) was deposited on a typical compositions IGZO layer (IGZO-111). From the optical properties and photoelectron yield spectroscopy measurements, the heterojunction channel was expected to have the type–II energy band diagram which possesses a conduction band offset (ΔEc) of ~0.4 eV. A depth profile of background charge density indicated that a steep ΔEc is formed even in the amorphous IGZO heterojunction interface deposited by sputtering. A field effect mobility (μFE) of bottom gate structured IGZO TFTs with the heterojunction channel (hetero-IGZO TFTs) improved to ~20 cm2 V−1 s−1, although a channel/gate insulator interface was formed by an IGZO−111 (μFE = ~12 cm2 V−1 s−1). Device simulation analysis revealed that the improvement of μFE in the hetero-IGZO TFTs was originated by a quantum confinement effect for electrons at the heterojunction interface owing to a formation of steep ΔEc. Thus, we believe that heterojunction IGZO channel is an effective method to improve electrical properties of the TFTs.
Funder
Japan Society for the Promotion of Science
Subject
General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献