Environmental Prediction in Cold Chain Transportation of Agricultural Products Based on K-Means++ and LSTM Neural Network

Author:

Jiang Junjie1,Peng Cuiling1,Liu Wenjing1,Liu Shuangyin123,Luo Zhijie123,Chen Ningxia123

Affiliation:

1. College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

2. Intelligent Agriculture Engineering Technology Research Centre, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

3. Guangzhou Key Laboratory of Agricultural Products Quality & Safety Traceability Information Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

Abstract

Experiments have proven that traditional prediction research methods have limitations in practice. Proposing countermeasures for environmental changes is the key to optimal control of the cold chain environment and reducing the lag of control effects. In this paper, a cold chain transportation environment prediction method, combining k-means++ and a long short-term memory (LSTM) neural network, is proposed according to the characteristics of the cold chain transportation environment of agricultural products. The proposed prediction model can predict the trend of cold chain environment changes in the next ten minutes, which allows cold chain vehicle managers to issue control instructions to the environmental control equipment in advance. The fusion process for temperature and humidity data measured by multiple data sensors is performed with the k-means++ algorithm, and then the fused data are fed into an LSTM neural network for prediction based on time series. The prediction error of the prediction model proposed in this paper is very satisfactory, with a root-mean-square error (RMSE), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE) and R-squared of 0.5707, 0.2484, 0.3258, 0.0312 and 0.9660, respectively, for temperature prediction, and with an RMSE, MAE, MSE, mean absolute percentage error and R-squared of 1.6015, 1.1770, 2.5648, 0.2736 and 0.9702, respectively, for humidity prediction. Finally, the LSTM neural network and back propagation (BP) neural network are compared in order to enhance the reliability of the results. In terms of the prediction effect of the temperature and humidity in cold chain vehicles transporting agricultural products, the proposed model has a higher prediction accuracy than that of existing models and can provide strategic support for the fine management and regulation of the cold chain transportation environment.

Funder

National Natural Science Foundation of China

Guangdong Science and Technology Plan

Guangzhou Science Research Plan

Guangzhou Rural Science and Technology Specialists Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3