Optimization of Vegetable Restocking and Pricing Strategies for Innovating Supermarket Operations Utilizing a Combination of ARIMA, LSTM, and FP-Growth Algorithms

Author:

Ping Haoyang1,Li Zhuocheng1,Shen Xizhu1,Sun Haizhen23

Affiliation:

1. School of Future Science and Engineering, Soochow University, Suzhou 215299, China

2. School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China

3. Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China

Abstract

In the dynamic environment of fresh food supermarkets, managing the short shelf life and varying quality of vegetable products presents significant challenges. This study focuses on optimizing restocking and pricing strategies to maximize profits while accommodating the diverse and time-sensitive nature of vegetable sales. We analyze historical sales, pricing data, and loss rates of six vegetable categories in Supermarket A from 1 July 2020 to 30 June 2023. Using advanced data analysis techniques like K-means++ clustering, non-normal distribution assessments, Spearman correlation coefficients, and heat maps, we uncover significant correlations between vegetable categories and their sales patterns. The research further explores the implications of cost-plus pricing, revealing a notable relationship between pricing strategies and sales volumes. By employing Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) models, we forecast sales and determine optimal restocking volumes. Additionally, we use price elasticity theories and a comprehensive model to predict net profit changes, aiming to enhance profit margins by 47%. The study also addresses space constraints in supermarkets by proposing an effective assortment of salable items and individual product restocking plans, based on FP-Growth algorithm analysis and market demand. Our findings offer insightful strategies for sustainable and economic growth in the supermarket industry, demonstrating the impact of data-driven decision-making on operational efficiency and profitability.

Funder

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3