Research on Machine Learning Models for Maize Hardness Prediction Based on Indentation Test

Author:

Lin Haipeng1,Song Xuefeng1ORCID,Dai Fei1,Zhang Fengwei1,Xie Qiang1,Chen Huhu1

Affiliation:

1. College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China

Abstract

Hardness is a critical mechanical property of grains. Accurate predictions of grain hardness play a crucial role in improving grain milling efficiency, reducing grain breakage during transportation, and selecting high-quality crops. In this study, we developed machine learning models (MLMs) to predict the hardness of Jinsui No.4 maize seeds. The input variables of the MLM were loading speed, loading depth, and different types of indenters, and the output variable was the slope of the linear segment. Using the Latin square design, 100 datasets were generated. Four different types of MLMs, a genetic algorithm (GA), support vector machine (SVM), random forest (RF), and long short-term memory network (LSTM), were used for our data analysis, respectively. The result indicated that the GA model had a high accuracy in predicting hardness values, the R2 of the GA model training set and testing set reached 0.98402 and 0.92761, respectively, while the RMSEs were 1.4308 and 2.8441, respectively. The difference between the predicted values and the actual values obtained by the model is relatively small. Furthermore, in order to investigate the relationship between hardness and morphology after compression, scanning electron microscopy was used to observe the morphology of the maize grains. The result showed that the more complex the shape of the indenter, the more obvious the destruction to the internal polysaccharides and starch in the grain, and the number of surface cracks also significantly increases. The results of this study emphasize the potential of MLMs in determining the hardness of agricultural cereal grains, leading to improved industrial processing efficiency and cost savings. Additionally, combining grain hardness prediction models with the operating mechanisms of industry machinery would provide valuable references and a basis for the parameterization of seed grain processing machinery.

Funder

Youth Fund of the National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid LSTM and SVM Method Rice Yield Prediction in Densely Populated Areas;2024 International Electronics Symposium (IES);2024-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3