Affiliation:
1. College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
2. National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
Abstract
Biofortification is one of the most successful approaches to enhance the level of micronutrients in wheat. In the present study, wheats with zinc biofortification (foliar fertilization and breeding strategies) were milled into five components (whole flour, break flour, reduction flour, fine bran, and coarse bran) and their mineral content and nutritional components were evaluated. The results revealed that biofortification greatly increased the Zn concentration (by 30.58%–30.86%) and soluble Zn content (by 28.57%–42.86%) of whole flour after digestion. This improvement is mainly in break flour, reduction flour, and fine bran. Meanwhile, the contents of macronutrients including ash, lipids, and proteins and micronutrients containing iron, calcium, and vitamins (B1, B6, and B9) increased after biofortification. In addition, there was a decline in the concentrations of vitamins B2 and B5. Although dietary fibers and starch are the major carbohydrates, total dietary fiber exhibited a declining trend in coarse bran, and starch exhibited a rising trend in break and reduction flour. There was a decrease in the molar ratio of phytates: zinc did not promote a significant improvement in zinc bioaccessibility. These results can be useful for generating wheat varieties rich in micronutrients as well as having better nutritional traits.
Subject
Food Science,Nutrition and Dietetics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献