Determination of Adulteration Content in Extra Virgin Olive Oil Using FT-NIR Spectroscopy Combined with the BOSS–PLS Algorithm

Author:

Jiang HuiORCID,Chen Quansheng

Abstract

This work applied the FT-NIR spectroscopy technique with the aid of chemometrics algorithms to determine the adulteration content of extra virgin olive oil (EVOO). Informative spectral wavenumbers were obtained by the use of a novel variable selection algorithm of bootstrapping soft shrinkage (BOSS) during partial least-squares (PLS) modeling. Then, a PLS model was finally constructed using the best variable subset obtained by the BOSS algorithm to quantitative determine doping concentrations in EVOO. The results showed that the optimal variable subset including 15 wavenumbers was selected by the BOSS algorithm in the full-spectrum region according to the first local lowest value of the root-mean-square error of cross validation (RMSECV), which was 1.4487 % v/v. Compared with the optimal models of full-spectrum PLS, competitive adaptive reweighted sampling PLS (CARS–PLS), Monte Carlo uninformative variable elimination PLS (MCUVE–PLS), and iteratively retaining informative variables PLS (IRIV–PLS), the BOSS–PLS model achieved better results, with the coefficient of determination (R2) of prediction being 0.9922, and the root-mean-square error of prediction (RMSEP) being 1.4889 % v/v in the prediction process. The results obtained indicated that the FT-NIR spectroscopy technique has the potential to perform a rapid quantitative analysis of the adulteration content of EVOO, and the BOSS algorithm showed its superiority in informative wavenumbers selection.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3