Abstract
Path planning is one of the key parts of unmanned aerial vehicle (UAV) fast autonomous flight in an unknown cluttered environment. However, real-time and stability remain a significant challenge in the field of path planning. To improve the robustness and efficiency of the path planning method in complex environments, this paper presents RETRBG, a robust and efficient trajectory replanning method based on the guiding path. Firstly, a safe guiding path is generated by using an improved A* and path pruning method, which is used to perceive the narrow space in its surrounding environment. Secondly, under the guidance of the path, a guided kinodynamic path searching method (GKPS) is devised to generate a safe, kinodynamically feasible and minimum-time initial path. Finally, an adaptive optimization function with two modes is proposed to improve the optimization quality in complex environments, which selects the optimization mode to optimize the smoothness and safety of the path according to the perception results of the guiding path. The experimental results demonstrate that the proposed method achieved good performance both in different obstacle densities and different resolutions. Compared with the other state-of-the-art methods, the quality and success rate of the planning result are significantly improved.
Funder
National Key Research and Development Project of China
Subject
General Earth and Planetary Sciences
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献