LAEA: A 2D LiDAR-Assisted UAV Exploration Algorithm for Unknown Environments

Author:

Hou Xiaolei1ORCID,Pan Zheng1ORCID,Lu Li1,Wu Yuhang1,Hu Jinwen1,Lyu Yang1,Zhao Chunhui1ORCID

Affiliation:

1. College of Automation, Northwestern Polytechnical University, Xi’an 710129, China

Abstract

In UAV autonomous exploration, large frontier clusters are commonly associated with high information gain and are visited first. In contrast, small and isolated frontier clusters with fewer frontiers are associated with smaller information gain and are thus explored with low priority. However, these small and isolated frontier clusters are often in close proximity to UAVs and surrounded by explored areas, which could result in back-and-forth flights that lower exploration efficiency. This paper proposes LAEA, a LiDAR-assisted and depth camera-dominated UAV exploration algorithm that aims to improve UAV autonomous exploration efficiency. A hybrid map is obtained that characterizes rich environmental profile information in real time, enabling us to detect small and isolated frontier clusters that can lead to repeated visits to explored areas. An environmental information gain optimization strategy is incorporated such that frontier clusters with larger unexplored areas behind them, as well as small and isolated frontier clusters close to the UAV, are assigned higher weights to prioritize their visit order. An optimized flight trajectory is generated to cover unexplored frontier clusters in the immediate vicinity of the UAV while flying to the next target. A comprehensive comparison between the proposed algorithm and state-of-the-art algorithms was conducted via a simulation study, which showed that our algorithm exhibits superior exploration efficiency in various environments. Experiments were also carried out to verify the feasibility of the proposed approach in real-world scenarios.

Funder

National Natural Science Foundation of China of Funder

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3