Automatic and Semantically-Aware 3D UAV Flight Planning for Image-Based 3D Reconstruction

Author:

Koch TobiasORCID,Körner MarcoORCID,Fraundorfer FriedrichORCID

Abstract

Small-scaled unmanned aerial vehicles (UAVs) emerge as ideal image acquisition platforms due to their high maneuverability even in complex and tightly built environments. The acquired images can be utilized to generate high-quality 3D models using current multi-view stereo approaches. However, the quality of the resulting 3D model highly depends on the preceding flight plan which still requires human expert knowledge, especially in complex urban and hazardous environments. In terms of safe flight plans, practical considerations often define prohibited and restricted airspaces to be accessed with the vehicle. We propose a 3D UAV path planning framework designed for detailed and complete small-scaled 3D reconstructions considering the semantic properties of the environment allowing for user-specified restrictions on the airspace. The generated trajectories account for the desired model resolution and the demands on a successful photogrammetric reconstruction. We exploit semantics from an initial flight to extract the target object and to define restricted and prohibited airspaces which have to be avoided during the path planning process to ensure a safe and short UAV path, while still aiming to maximize the object reconstruction quality. The path planning problem is formulated as an orienteering problem and solved via discrete optimization exploiting submodularity and photogrammetrical relevant heuristics. An evaluation of our method on a customized synthetic scene and on outdoor experiments suggests the real-world capability of our methodology by providing feasible, short and safe flight plans for the generation of detailed 3D reconstruction models.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference60 articles.

1. Pix4D: Pix4Dcapturehttps://pix4d.com/product/pix4dcapture/

2. Photo tourism

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3