An Offline Coarse-To-Fine Precision Optimization Algorithm for 3D Laser SLAM Point Cloud

Author:

Dai ,Yan ,Liu ,Chen ,Huo

Abstract

3D laser simultaneous localization and mapping (SLAM) technology is one of the most efficient methods to capture spatial information. However, the low-precision of 3D laser SLAM point cloud limits its application in many fields. In order to improve the precision of 3D laser SLAM point cloud, we presented an offline coarse-to-fine precision optimization algorithm. The point clouds are first segmented and registered at the local level. Then, a pose graph of point cloud segments is constructed using feature similarity and global registration. At last, all segments are aligned and merged into the final optimized result. In addition, a cycle based error edge elimination method is utilized to guarantee the consistency of the pose graph. The experimental results demonstrated that our algorithm achieved good performance both in our test datasets and the Cartographer public dataset. Compared with the reference data obtained by terrestrial laser scanning (TLS), the average point-to-point distance root mean square errors (RMSE) of point clouds generated by Google’s Cartographer and LOAM laser SLAM algorithms are reduced by 47.3% and 53.4% respectively after optimization in our datasets. And the average plane-to-plane distances of them are reduced by 50.9% and 52.1% respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3