MVS‐SLAM: Enhanced multiview geometry for improved semantic RGBD SLAM in dynamic environment

Author:

Islam Qamar Ul1,Ibrahim Haidi1,Chin Pan Kok2,Lim Kevin2,Abdullah Mohd Zaid1

Affiliation:

1. School of Electrical and Electronic Engineering Universiti Sains Malaysia Engineering Campus Nibong Tebal Penang Malaysia

2. PixArt Imaging (Penang), Sdn. Bhd., Kompleks Eureka Universiti Sains Malaysia Gelugor Penang Malaysia

Abstract

AbstractSimultaneous Localization and Mapping (SLAM) is a crucial technology for intelligent mobile robots to operate successfully in unknown environments. While many excellent SLAM systems have been developed in recent years, most assume that the environment is static, resulting in poor performance in dynamic environments. To address this limitation, we propose multiview stereo (MVS)‐SLAM (MVS‐SLAM), a real‐time semantic RGBD SLAM system with improved‐multiview geometry, built on the RGBD mode of ORB‐SLAM3. MVS‐SLAM tightly integrates semantic and geometric information to tackle the challenges posed by dynamic scenes. To meet the real‐time requirements, the semantic module leverages the latest and fastest object detection network, YOLOv7, to provide semantic prior knowledge for the geometric module. We introduce a novel geometric constraint method that capitalizes on depth images and semantic information to recover three‐dimensional (3D) feature points and initial camera pose. We use a 3D coordinate error threshold to identify dynamic points and remove them using the K‐means clustering algorithm. This approach effectively reduces the impact of dynamic points. We validate MVS‐SLAM using challenging dynamic sequences from the TUM data set, demonstrating that it significantly improves localization accuracy and system robustness in all types of dynamic environments.

Publisher

Wiley

Subject

Computer Science Applications,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3