DIO-SLAM: A Dynamic RGB-D SLAM Method Combining Instance Segmentation and Optical Flow

Author:

He Lang1ORCID,Li Shiyun1,Qiu Junting2,Zhang Chenhaomin1

Affiliation:

1. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China

2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

Abstract

Feature points from moving objects can negatively impact the accuracy of Visual Simultaneous Localization and Mapping (VSLAM) algorithms, while detection or semantic segmentation-based VSLAM approaches often fail to accurately determine the true motion state of objects. To address this challenge, this paper introduces DIO-SLAM: Dynamic Instance Optical Flow SLAM, a VSLAM system specifically designed for dynamic environments. Initially, the detection thread employs YOLACT (You Only Look At CoefficienTs) to distinguish between rigid and non-rigid objects within the scene. Subsequently, the optical flow thread estimates optical flow and introduces a novel approach to capture the optical flow of moving objects by leveraging optical flow residuals. Following this, an optical flow consistency method is implemented to assess the dynamic nature of rigid object mask regions, classifying them as either moving or stationary rigid objects. To mitigate errors caused by missed detections or motion blur, a motion frame propagation method is employed. Lastly, a dense mapping thread is incorporated to filter out non-rigid objects using semantic information, track the point clouds of rigid objects, reconstruct the static background, and store the resulting map in an octree format. Experimental results demonstrate that the proposed method surpasses current mainstream dynamic VSLAM techniques in both localization accuracy and real-time performance.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3