Effect of Pulsed Electromagnetic Field on Growth, Physiology and Postharvest Quality of Kale (Brassica oleracea), Wheat (Triticum durum) and Spinach (Spinacia oleracea) Microgreens

Author:

Katsenios NikolaosORCID,Christopoulos Miltiadis V.ORCID,Kakabouki IoannaORCID,Vlachakis DimitriosORCID,Kavvadias Victor,Efthimiadou AspasiaORCID

Abstract

Microgreens’ popularity is increasing worldwide, and many efforts are focused on novel techniques that could increase fresh production without affecting the quality and the shelf life of the young plants. Three species of microgreens (kale, durum wheat, and spinach) were cultivated in a greenhouse experiment in November–December 2020. Pulsed electromagnetic field (PEMF) was applied at three different growth stages (seed, newly developed plant, and before harvest) and three different times of exposure at each stage, while untreated seeds were used as control. According to the results, certain PEMF treatments increased fresh weight for all three plant species, while dry weight was higher in the treated plants for wheat and spinach, compared to the control. As for the color parameters L*, a*, and b*, at the harvest and postharvest, PEMF treatments had no negative effects, either at harvest or at green color retention, during storage. Moreover, PEMF treatments improved green color in wheat, and restricted yellow color in spinach. An important finding regarding respiration was that PEMF treatments increased both O2 consumption and CO2 production for durum wheat and CO2 production for spinach.

Funder

State Scholarships Foundation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3