Effect of Grain Structure and Ni/Au-UBM Layer on Electromigration-Induced Failure Mechanism in Sn-3.0Ag-0.5Cu Solder Joints

Author:

Zhang YuanxiangORCID,Zhang Jicheng,Wang Yong,Fang Yike

Abstract

The development of advanced electronic devices leads to highly miniaturized interconnect circuits (ICs), which significantly increases the electromigration (EM) phenomenon of solder and circuits due to higher current density. The electromigration of solder joints under high current density has become a severe reliability concern in terms of microelectronic product reliability. The microstructure of the solder plays an important role in the electromigration induced degradation. In this study, Sn-3.0Ag-0.5Cu solder bumps with Ni/Au under bump metallization (UBM) layer were fabricated and electromigration acceleration tests were conducted under current density of 1.4 × 104 A/cm2 and 120 °C to investigate the effect of grain structure and Ni/Au-UBM layer on EM-induced failure. Grain structures of solder bumps were determined by utilizing the Electron Backscatter Diffraction (EBSD) technique, and single-crystal solder, single-crystal dominated solder, and polycrystalline solder are observed in different test samples. According to the Scanning Electron Microscope (SEM) images, it is observed that the Ni/Au-UBM layer of the Cu pad can inhibit atom diffusion between solder bump and Cu pad, which reduces the consumption of Cu pad but causes a large void and crack at the interface. The EM lifetime of single crystal solder bumps is lower than that of polycrystalline solder bumps when the c-axis of single crystal solder bumps is perpendicular to the electron flow direction. Additionally, the single crystal structure will increase the brittleness of the solder bump, and cracks are easily generated and expanded under the stress caused by the mismatch of thermal expansion coefficients between the solder bump and Ni/Au-UBM layer near Cu pad. Polycrystalline solder bumps with a higher misorientation angle (15–55°) have a higher atom diffusion rate, which will result in the acceleration of the EM-induced failure.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3